
1966 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO 10, OCTOBER 1992

In this example, only 16 triangular second order finite elements are

used to obtain a convergent result.

V. CONCLUSIONS

A generalized coupled finite and boundary element method has

been shown to be applicable to microwave planar circuit problems.

The planar waveguide model is used in developing the technique.

The technique takes advantage of the strengths of the fimte element

and boundary element methods. Thus, it can handle complicated

and arbitrarily shaped planar circuits with a small computational

overhead. The validity of the method was confirmed by comparing

the CFBM results. either with published results or with experimen-

tal results. The performance of a Y-junction circulator with an

equilateral triangular ferrite post was also investigated. For all the

numerical examples, the power conservation condition has been

found to be satisfied to an accuracy of ~ 10-5 to ~ 10-4 within the

frequency band of the dominant mode.
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Conductor Thickness and

Mounting Grooves
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Abs&ac~-A modified transverse resonance method is presented for
analyzing generalized multilayered, multiconductor quasiplanar struc-
tures with practical parameters such as finite conductor thickness and
monnting grooves. Recurrence relations are obtained by using network
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theory, for obtaining the overall transverse equivalent network, while

the discontinuity involving finite thickness metal sheet and mounting
groove is carried ont by field-theory based multimodal variational for-
mulation. The frequency behavior of propagating, evanescent and

complex modes are obtained for several commonly used quasiplanar
lines, showing good agreement with publisbed results. Furthermore,

the leaky-wave study is carried out for open structures, since the open
condition can be included in this formulation witbout difficulties.

I. INTRODUCTION

Various planar and quasiplanar structures play a determinant role

in the realization of MIC’S and MMIC’S, which found growing

interest in microwave and millimeter-wave subsystems design [ 1].

[2]. Many rigorous, full-wave analysis techniques have been de-

veloped for their characterization, among which the most popular

will be the spectral domain approach [3], [4], the integral equation

technique [5]-[8], and various mode-matching techniques [9]-[ 12].

It has been shown that the spectral domain approach, as well as the

integral equation technique, are numerically efficient. On the other

hand, the mode-matching techniques are more versatile since the

practical parameters of real quasiplanar structures, such as the me-

tallization thickness and the mounting grooves, can be easily taken

into account; nevertheless, more numerical effort will be paid be-

cause of relatively large matrix involved.

We present here another modified transverse resonance tech-

nique. Contrary to the existing one in which the problem is for-

mulated entirely by the field them-y [9], [1 1], we use both the field

and network theories, as m the classical transverse resonance

method [13]. By considering the generalized quasiplanar structure

as cascaded parallel-plate wavegtrides, each homogeneous region

will be characterized by a transmission matrix, instead of the TEM

line in [13], and the junction between two parallel-plate wave-

guides characterized by a multiport, instead of a shunt admittance.

The characteristic equation can then be easily found by applying

the resonance condition. The solution is obtained only by applying

the well known and easy to use network theory, except for the re-

duced impedance matrix of parallel-plate waveguide junctions

which will be achieved by a rigorous multimodal variational method

[14]. Furthermore, as we can choose the size of each impedance

matrix, that is, the number of coupling modes in each parallel-plate

waveguide, without affecting the accuracy of remaining matrix ele-

ments, as explained in [14], the resultant matrix size can be much

smaller than the number of eigenmodes considered, providing a

convenient way to accelerate the numerical computations. The

classical transverse resonance method is then a particular case of

this formulation when only the dominant TEM mode is considered.

A quasiplanar structure simulation program has been developed on

a personal computer, and applied to several commonly used planar

and quasiplanar wavegmdes by considering both the metal lization

thickness and the mounting groove. Original results such as the

complex and backward modes in the suspended microstrip are pre-

sented, as well as the leaky modes in the open quasiplanar structure

which is very useful in the novel-type millimeter-wave antenna de-

sign [15], [16]. The latter has been compared to the published re-

sults concerning a leaky-wave microstrip antenna [15], showing

good agreement.

II. MODIFIED TRANSVERSE RESONANCE METHOD

Fig. 1(a) shows a multilayered, multiconductor quasiplanar

guiding structure, with its equivalent transverse network model in

Fig, 1(b). The reduced impedance matrix of each multiport. which
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Fig. 1. (a) Cross-section of a generalized quasiplanar structure; the two
terminal planes can be either electric wall (EW), magnetic walls (M W) or
open (OC); (b) Equivalent transverse network model.

characterizes the junction between two parallel-plate waveguides,

will be obtained by applying the field theory based multimodal

variational formulation [14]. The characteristic equation is yielded

by using the transverse network resonant condition, in which both

transmission and impedance matrices will be used.

A. Reduced Impedance Matrix Associated with a Parallel-Plate

Waveguide Junction

The electric and magnetic fields transverse to the x-direction will

be expanded over the TE1 and TM, basis in each region as follows,

by omitting the common factor e-y’

r ~ 1(0

Boldface italic letters are used here for space vectors. u:) and i $)

correspond to the sum and difference of the x-direction incident and

reflected wave amplitude of the TEX and TMX eigenmodes in the

i th region,with e$~and y$), the electric mode function and the mode

admittance, are defined respectively by

(i) = ~~ cosh # COS~~jY,
%

e~~ = - sinh r!) sin k$y, (2)

([h) = k::/ ~yo, y($) =Y.
(0 k(i)

/ox~er ~,, (3)

with k~~2 = k~e~) + -y2 – k$z, k$ = n~/w(i), e. = 1, en = 2, for

n # 0. The superscripts h and e correspond, respectively, to TEX

and TMX eigenmodes. Expressions for other parameters will be

given in the Appendix.

Since the above mode function basis e,. ~y) is orthogonal to its

adjoint defined by e; (-y) = e,fi ( – -y), the characterization of junc-

tions between parallel-plate lines may be carried out by the multi-

modal variational method [14]. The reduced impedance matrix cor-

responds to the accessible ports will be given, according to [14],

by

— —
‘(i, i+l)(z)};+’) = –,ja y.r,fln . (4)

A detailed development will be given in the Appendix. It is shown

that the accuracy of each element in (4) depends on the number of

considered eigenmodes, and the trial aperture electric fields in

which the edge condition can be easily included. The size of the

(a) (b)

Fig. 2. (a) Impedance matrix seeing through a section of line; (b) Imped-

ance matrix seeing through a multiport.

reduced impedance matrix depends only on the number of cottplling

modes which may be very small compared with the total number

of eigenmodes used. Furthermore, the impedance matrix fortnula-

tion allows the use of a different number of eigenmodes in the ith

and (i + 1) th region, contrary to the transmission matrix formu-

lation. This will be very useful for achieving a faster numerical

convergence.

B. Recurrence Relations for Cascaded Networks

Two situations exist when cascading multiple transverse net-

works as shown in Fig. 2 (a)–(b). When the ith region is terminated

by a known charge at its left end, characterized by a reduced
——

impedance matrix Z~) (Fig. 2(a)), the reduced impedance matrix

looking from the right end will be given by using the ith region

transmission matrix

(5)
— —— —

with l“!), T!) two diagonal matrices in which the 1th diagonal ele-

ment corresponds respectively to cos (k!) L(i)) and j sin ( 1~)l!)).

For the case shown in Fig. 2(b), the reduced ~mpedance matrix

looking through a multiport characterized by 2(’ -1 ~‘) and termi-—

nated by 2$) willl be given by

— — —
~y - 1) = ~~,–1.f) — ~f2–1.i) ~(i) + ~(j–l,i) –1~(i–1.i)

(-, ’22 ) ‘2 I . (@

C. Generalized Resonance Condition and Characteristic

Equation

When applying the recurrence relations (5) and (6), we begin

from the last layer of the general quasiplanar structure, and the

terminating conditions may be expressed by a diagonal reduced

impedance matrix located at P$~) with its lth element given by

I
< –j tan (.k$~)L(N) ), EW (Electric Wall)

(~~N))ll = – 1 OC (Open Condition) (7)

(j cot (k~~)L(N)), MW (Magnetic Wall)
—

By using alternatively (5) and (6), we obtain ~j[). The generalized

resonance condition will be given by

(8)
— —— —

with Z\ 1)’ obtained in the same manner as for Z:!’). The non-trivial— —

solution is yielded by equating the determinant of ~ji)’ + ~j’) to
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zero, which is the characteristic equation of the generalized quasi-

planar structure.

III. PRACTICAL APPLICATIONS TO QUASIPLANAR STRUCTURES

As we can see in the Appendix, the reduced impedance matrix

depends on the choice of three parameters: the number of eigen-

modes in both parallel-plate lines involved, N, and N2, and the

aperture electric field expansion terms, M, with or without consid-

ering the metal sheet edge effect. Additionally, the analysis of the

overall structure depends also on the number of coupling modes in

each region. The influence of both parameters has been illustrated

by analyzing a microstrip-like transmission line [5]. Fig. 3(a) shows

the variation of the normalized propagation constant versus the ex-

pansion terms M. The computation has been carried out by using

respectively 20, 30 and 50 eigenmodes in both dielectric and air-

filled regions, no significant difference (less than 0.3%) has been

observed for these three cases. Fast convergence has been obtained

with an eigenfunction basis considering the edge conditions. The

variation of the normalized propagation constant versus the number

of coupling modes in the strip region, where 10 eigenmodes are

considered, has been given in Fig. 3(b) for respectively 100 ~m

and 10 ~m strip thickness cases. For both cases only 1% error will

result if ~ of eigenmodes are considered accessible, this means the

size of corresponding impedance matrix is only ~ of the original

one.

Several commonly used quasiplanar structures such as the

shielded microstrip line, uni- and bilateral finline, coplanar wave-

guide has been studied by the present method, showing good agree-

ment with other full-wave analysis results. When applying this

method to the suspended microstrip with finite strip thickness for

both propagating and evanescent cases, we have observed the mode

disappearance [7] for several pairs of evanescent modes, which

predicts the existence of complex modes. The latter has been ob-

tained by scanning the complex plane of -y, and the results are

shown in Fig. 4.

The results of [11] are also given in the same figure, showing

good agreement for most of the modes, except for those derived

from the complex modes, for which a significant difference can be

observed near the cutoff. The backward-wavemodes, such as the

4th even-mode, have also been observed.

It is shown that many open printed transmission lines can support

leaky-wave modes with suitable excitation and appropriate choice

of structure sizes [16]. This is very useful in scannable millimeter-

wave antenna design in which manufacture becomes an important

criterion. Most of these lines can be represented by the generalized

quasiplanar structure of Fig. 1(a) with the open condition (7). When

infinite dielectric substrate is considered, as for the leaky-wave mi -

crostrip antenna [15], we can always introduce two lateral metal

planes at a certain distance. Tbe complex leaky-wave constant ob-

tained in this way has been given in Fig. 5, and compared with the

results of [15], showing good agreement in the frequency range in

which the structure can be used for antenna design. The bilateral

finline has also been studied with one of the lateral walls removed,

and the results for the first odd-mode are shown in Fig. 6, com-

pared with those of the shielded structure. We can see that no sig-

nificant difference exists in the higher frequency range, but when

the frequency decreases, the odd-mode becomes leaky. Generally

speaking, the design of a leaky-wave guide can be carried out only

according to the shielded structure analysis, since the working fre-

quency range is defined by O < (3/kO < 1, with (1 being the real

phase constant.
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Fig. 3. Convergence studies for a mlcrostrrp-hke transmission line [5]. The

normalized propagation constant and the relahve error (compared with the
quasi-TEM solutlon) versus: (a) Aperture field expansion terms with nor-
mal ( + +) and modified (O O) eigenfunction basis; (b) Couphng terms in
the strip region with a strip thickness of 10 pm ( + +) and 100 ~m (O o);

w = h = 1.27 mm, a = b = 12.7 mm, e, = 8.875.

0 40

Fig. 4. Propagating, evanescent and complex modes of a suspended mi-
crostrip line; Our results for even (_) and odd (– –) modes compared

with those of [11] (o, +); WR28 waveguide with w = 1 mm, hz = 0.635
mm, h] = 113+ r, r = 5 pm, ~, = 9.6.
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Fig. 5. Leaky-wave mode of a microstrip leaky-wave antenna; Our results

(_) compared with data taken from [15] (+ +). Dimensions used:
~ = 15, h = 0.794, a = 45 (mm); c, = 2.32.
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Fig. 6. Dispersion behavior of a bilateral frnhne. Even (—) modes com-

pared with those of [4] (+ +); Odd modes with ( – –) and without (–. -)
open condition. WR28 wavegulde with 2s = 0.5, 2d = 0.125 (mm), ~, =

3.

IV. CONCLUSION

This paper presents a modified transverse resonance method for

analyzing generalized quasiplanar structures with practical param-

eters such as finite conductor thickness and mounting grooves. The

computation of the frequency behavior of propagating, evanescent

and complex modes have been carried out for several commonly

used quasiplanar lines, and good agreement with published results

has been obtained. Furthermore, as the open condition can be eas-

ily taken into account by using this forrnu lation, the leaky-wave

modes for open quasiplanar structures have also been studied, giv-

ing useful design information.

APPENDIX

Thequantities appearing in (2)

*for TE case: cosh r!) = -y/ Q~), sinh ‘r!) = –kj~/Q~)
(Al)

(f) = k(l) Q$), sin~ ~~) = –7/Q~l*for TM case: cosh ~~ yn/

where Q~)2 = k~~2 – 72, andy = u + j~ is thecomplex propa-

gation constant. w (1) denotes the height of a parallel-plate wave-

guide.

‘(l. i+l)in (4)Matrix elements r ,nn

with

@o.+1) =
(–j)(%r, f(i’[+ ’)%)>

——

EC = [@)@l+l, l)] . . . ;(i+l,w]f

(=(’))ml= (gin, e$), 1=1,2,””” , K(,);

(=(;+l,qJm,= (gm,ej+“q)), [=1,2,””” , @f+ 1.0.

K(’) corresponds to the number of coupling eigenmodes in the i th

region, and G = {g. } denotes the eigenfunction basis for the ap-

erture electric field expansion in an N-furcated parallel-plate wave-

guide given by

G = [e\+ i’i) . . . e$~+’”) . . . e\~+i’N) . . . e$+i’~)] (A3)

One should note that (A3) will be truncated during the numerical

process. When the edge condition is considered, the following ba-

sis will be used instead of (A3),
——

G [G} G,] (A4)

with

(I+ I,q) = e$~+ l.Y)Ay-~, g$h+ I,q) = e$,,+ l,@ Ay-”
gyn

Ay = (w(f+i’q)/2)2 – (y – f(’+”q) – w(’+1’q)/2)2

v will be ~ for the zero thickness strip case, and ~ for the l~nite

thickness strip By examining (A2)-(A4) and (2), one can see that

all integrals will be analytic and independently of y.
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Dispersion and Leakage Characteristics of Coplanar

Waveguides

Jeng-Yi Ke, I-Sheng Tsai, and Chun Hsiung Chen

Abstract—The spectral-domain approach is utilized to discuss the
dispersion and leakage phenomenon in a coplanar waveguide structure

caused by the substrate surface wave. In this study, the effective di-
electric constant and the attenuation constant due to surface wave leak-
age are presented and discussed in detail.

I. INTRODUCTION

Recently the coplanar waveguide structure receives increased at-

tention due to its potential applications in millimeter wave spec-

trum. With all three conductors on the same side of the substrate,

the coplanar waveguide is easy in adaptation to active and passive

components in shunt and series configurations and hence becomes

a useful component of millimeter-wave integrated circuits.

The coplanar waveguide structure was proposed by Wen [1] as

a transmission medium in microwave circuits. Its dispersion char-

acteristics were studied, using the full-wave analyses such as spec-

tral-domain approach [2] and hybrid approach [3].

The possibility of leakage in coplanar waveguide structure

through substrate surface-wave modes was discussed and estimated
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by a simplified theory based on reciprocity [4], [5]. Leakage to

substrate surface-wave modes was also observed in other structures

such as the coplanar stripline [6], the slot line [7], [8], the micro-

strip on an anisotropic substrate [9], and the conductor-backed co-

planar waveguide [5]. Recent leakage study on coplanar wave-

guides of finite and infinite widths revealed several interesting

behaviors such as sharp and deep minima and narrow sharp peaks

[10]. Since power leakage through surface waves may produce un-

desired cross talk and package effects, there is a need of detail

leakage analysis for the coplanar waveguide structure.

In this study, the spectral-domain analysis will be utilized to dis-

cuss the leakage phenomenon in an open coplanar waveguide struc-

ture caused by the substrate surface wave. The dispersion and leak-

age characteristics of the coplanar waveguide will then be discussed

in detail, which include typical numerical results such as the effec-

tive dielectric constant and the attenuation constant due to surface

wave leakage.

II. SPECTRAL-DOMAIN ANALYSIS

Consider the coplanar waveguide structure (insert of Fig. 1) with

strip width w, slot width, s, and a substrate of thickness h and

relative dielectric constant e,. It is assumed that all field quantities

are of the form exp [ j(cot – k:z)]. To conduct the spectral-domain

anal ysis, the Fourier transformation pair is introduced as

i

.

~(k,) = A(x)e ‘JA” dx
—m

1
cm

A(x) == ~ ~(kX)eJ~r’ dkX.
27r -*

(1)

Then a relation which relates electric currents (~,, ~,) to electric

fields (1%, ~.) in the spectral domain can be established [11]

(2)

Here ~-,, Gz,, G.,:, and Gu are the transformed Green’s functions

whose poles may be identified with the characteristic surface wave

modes of the dielectric slab with back-side metallization.

In this analysis, the tangential electric fields

panded as

E,(x) = z c; @:(x)
“

on the slot are ex-

(3)

where C: and Cl are unknown coefficients to be determined and

@~(x) and @~(x) are known basis functions as suggested by [12].

By applying the Galerkin’s procedure in the spectral domain, the

following matrix equation can be derived

[Zy] [c] = o (4)

where

[c] = [C; c;]f

The propagation constant k, is then obtained by requiring the de-

terminant of the Z-matrix be zero, and the effective dielectric con-

stant eeff = (k:/kO)* can be achieved.
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