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In this example, only 16 triangular second order finite elements are
used to obtain a convergent result.

V. CONCLUSIONS

A generalized coupled finite and boundary element method has
been shown to be applicable to microwave planar circuit problems.
The planar waveguide model is used in developing the technique.
The technique takes advantage of the strengths of the finite element
and boundary element methods. Thus, it can handle complicated
and arbitrarily shaped planar circuits with a small computational
overhead. The validity of the method was confirmed by comparing
the CFBM results. either with published results or with experimen-
tal results. The performance of a Y-junction circulator with an
equilateral triangular ferrite post was also investigated. For all the
numerical examples, the power conservation condition has been
found to be satisfied to an accuracy of +1077 to +10™* within the
frequency band of the dominant mode.
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Abstract—A modified transverse resonance method is presented for
analyzing generalized multilayered, multiconductor quasiplanar struc-
tures with practical parameters such as finite conductor thickness and
mounting grooves. Recurrence relations are obtained by using network
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theory, for obtaining the overall transverse equivalent network, while
the discontinuity involving finite thickness metal sheet and mounting
groove is carried out by field-theory based multimodal variational for-
mulation. The frequency behavior of propagating, evanescent and
complex modes are obtained for several commonly used quasiplanar
lines, showing good agreement with published results. Furthermore,
the leaky-wave study is carried out for open structures, since the open
condition can be included in this formulation without difficulties.

I. INTRODUCTION

Various planar and quasiplanar structures play a determinant role
in the realization of MIC’s and MMIC’s, which found growing
interest in microwave and millimeter-wave subsystems design [1].
[2]. Many rigorous, full-wave analysis techniques have been de-
veloped for their characterization, among which the most popular
will be the spectral domain approach [3], [4], the integral equation
technique [5]-18], and various mode-matching techniques [9]-[12].
It has been shown that the spectral domain approach, as well as the
integral equation technique, are numerically efficient. On the other
hand, the mode-matching techniques are more versatile since the
practical parameters of real quasiplanar structures, such as the me-
tallization thickness and the mounting grooves, can be easily taken
into account; nevertheless, more numerical effort will be paid be-
cause of relatively large matrix involved.

We present here another modified transverse resonance tech-
nique. Contrary to the existing one in which the problem is for-
mulated entirely by the field theory [9], [11], we use both the field
and network theories, as in the classical transverse resonance
method [13]. By considering the generalized quasiplanar structure
as cascaded parallel-plate waveguides, each homogencous region
will be characterized by a transmission matrix, instead of the TEM
line in [13], and the junction between two parallel-plate wave-
guides characterized by a multiport, instead of a shunt admittance.
The characteristic equation can then be easily found by applying
the resonance condition. The solution is obtained only by applying
the well known and easy to use network theory, except for the re-
duced impedance matrix of parallel-plate waveguide junctions
which will be achieved by a rigorous multimodal variational method
[14]. Furthermore, as we can choose the size of each impedance
matrix, that is, the number of coupling modes in each parallel-plate
waveguide, without affecting the accuracy of remaining matrix ele-
ments, as explained in [14], the resultant matrix size can be much
smaller than the number of eigenmodes considered, providing a
convenient way to accelerate the numerical computations. The
classical transverse resonance method is then a particular case of
this formulation when only the dominant TEM mode is considered.
A quasiplanar structure simulation program has been developed on
a personal computer, and applied to several commonly used planar
and quasiplanar waveguides by considering both the metallization
thickness and the mounting groove. Original results such as the
complex and backward modes in the suspended microstrip are pre-
sented, as well as the leaky modes in the open quasiplanar structure
which is very useful in the novel-type millimeter-wave antenna de-
sign [15]. [16]. The latter has been compared to the published re-
sults concerning a leaky-wave microstrip antenna [15], showing
good agreement.

II. MoDIFIED TRANSVERSE RESONANCE METHOD

Fig. 1(a) shows a multilayered, multiconductor quasiplanar
guiding structure, with its equivalent transverse network model in
Fig. 1(b). The reduced impedance matrix of each multiport. which
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Fig. 1. (a) Cross-section of a generalized quasiplanar structure; the two
terminal planes can be either electric wall (EW), magnetic walls (MW) or
open (OC); (b) Equivalent transverse network model.

characterizes the junction between two parallel-plate waveguides,
will be obtained by applying the field theory based multimodal
variational formulation [14]. The characteristic equation is yielded
by using the transverse network resonant condition, in which both
transmission and impedance matrices will be used.

A. Reduced Impedance Matrix Associated with a Parallel-Plate
Waveguide Junction

The electric and magnetic fields transverse to the x-direction will
be expanded over the TE, and TM, basis in each region as follows,
-by omitting the common factor e™*
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Boldface italic letters are used here for space vectors. v and ¥
correspond to the sum and difference of the x-direction incident and
reflected wave amplitude of the TE, and TM, eigenmodes in the
ith region, with ¥ and y%, the electric mode function and the mode
admittance, are defined respectively by

e = Ne,/w cosh 79 cos k)y,

e = Ve,/w" sinh 79 sin &y, @
L o L
A = KD, 0 = e /) o

with €0 = k§e? + v* — k2, kD = nn /w0, g = 1, ¢, = 2, for
n # 0. The superscripts # and e correspond, respectively, to TE,
and TM, eigenmodes. Expressions for other parameters will be
given in the Appendix.

Since the above mode function basis e, (7y) is orthogonal to its
adjoint defined by e, (y) = €,,(—7), the characterization of junc-
tions between paraliel-plate lines may be catried out by the multi-
modal variational method [14]. The reduced impedance matrix cor-
responds to the accessible ports will be given, according to [14],
by

DG = i VY /ul 3T &Y. )

A detailed development will be given in the Appendix. It is shown
that the accuracy of each element in (4) depends on the number of
considered eigenmodes, and the trial aperture electric fields in
which the edge condition can be easily included. The size of the
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Fig. 2. (a) Impedance matrix seeing through a section of line; (b) Imped-
ance matrix seeing through a multiport.

reduced impedance matrix depends only on the number of coupling
modes which may be very small compared with the total number
of eigenmodes used. Furthermore, the impedance matrix formula-
tion allows the use of a different number of eigenmodes in the ith

“and (i + 1)th region, contrary to the transmission matrix formu-

lation. This will be very useful for achieving a faster numerical
convergence.

B. Recurrence Relations for Cascaded Networks

Two situations exist when cascading multiple transverse net-
works as shown in Fig. 2 (a)-(b). When the i th region is terminated
by a known charge at its left end, characterized by a reduced

impedance matrix Z{® (Fig. 2(a)), the reduced impedance matrix
looking from the right end will be given by using the ith region
transmission matrix

Z0= @ E L TOMA T o
with T, T two diagonal matrices in which the /th diagonal ele-
ment corresponds respectively to cos (k%) and j sin (I 9L9).
For the case shown in Fig. 2(b), the reduced impedance matrix

looking through a multiport characterized by Z¢~"? and termi-
nated by Z¥ will be given by
20 = B - B E + B 0

C. Generalized Resonance Condition and Characteristic
Equation

When applying the recurrence relations (5) and (6), we begin
from the last layer of the general quasiplanar structure, and the
terminating conditions may be expressed by a diagonal reduced

impedance matrix located at P®? with its /th element given by

7 —jtan (kQOL™),  EW (Electric Wall)
(39“)11 =4 -1 OC (Open Condition)  (7)
jcot (KL, MW (Magnetic Wall)

By using alternatively (5) and (6), we obtain 25”. The generalized
resonance condition will be given by

Zv+zh =0 ®)
with Z{"" obtained in the same manner as for Z&"). The non-trivial

solution is yielded by equating the determinant of Z}l)/ + Z}” to
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zero, which is the characteristic equation of the generalized quasi-
planar structure.

III. PRACTICAL APPLICATIONS TO QUASIPLANAR STRUCTURES

As we can see in the Appendix, the reduced impedance matrix
depends on the choice of three parameters: the number of eigen-
modes in both parallel-plate lines involved, N; and N,, and the
aperture electric field expansion terms, M, with or without consid-
ering the metal sheet edge effect. Additionally, the analysis of the
overall structure depends also on the number of coupling modes in
each region. The influence of both parameters has been illustrated
by analyzing a microstrip-like transmission line [5]. Fig. 3(a) shows
the variation of the normalized propagation constant versus the ex-
pansion terms M. The computation has been carried out by using
respectively 20, 30 and 50 eigenmodes in both dielectric and air-
filled regions, no significant difference (less than 0.3 %) has been
observed for these three cases. Fast convergence has been obtained
with an eigenfunction basis considering the edge conditions. The
variation of the normalized propagation constant versus the number
of coupling modes in the strip region, where 10 eigenmodes are
considered, has been given in Fig. 3(b) for respectively 100 pm
and 10 pm strip thickness cases. For both cases only 1% error will
result if % of eigenmodes are considered accessible, this means the
size of corresponding impedance matrix is only % of the original
one.

Several commonly used quasiplanar structures such as the
shielded microstrip line, uni- and bilateral finline, coplanar wave-
guide has been studied by the present method, showing good agree-
ment with other full-wave analysis results. When applying this
method to the suspended microstrip with finite strip thickness for
both propagating and evanescent cases, we have observed the mode
disappearance [7] for several pairs of evanescent modes, which
predicts the existence of complex modes. The latter has been ob-
tained by scanning the complex plane of vy, and the results are
shown in Fig. 4.

The results of [11] are also given in the same figure, showing
good agreement for most of the modes, except for those derived
from the complex modes, for which a significant difference can be
observed near the cutoff. The backward-wavemodes, such as the
4th even-mode, have also been observed.

It is shown that many open printed transmission lines can support
leaky-wave modes with suitable excitation and appropriate choice
of structure sizes [16]. This is very useful in scannable millimeter-
wave antenna design in which manufacture becomes an important
criterion. Most of these lines can be represented by the generalized
quasiplanar structure of Fig. 1(a) with the open condition (7). When
infinite dielectric substrate is considered, as for the leaky-wave mi-
crostrip antenna [15], we can always introduce two lateral metal
planes at a certain distance. The complex leaky-wave constant ob-
tained in this way has been given in Fig. 5, and compared with the
results of [15], showing good agreement in the frequency range in
which the structure can be used for antenna design. The bilateral
finline has also been studied with one of the lateral walls removed,
and the results for the first odd-mode are shown in Fig. 6, com-
pared with those of the shielded structure. We can see that no sig-
nificant difference exists in the higher frequency range, but when
the frequency decreases, the odd-mode becomes leaky. Generally
speaking, the design of a leaky-wave guide can be carried out only
according to the shielded structure analysis, since the working fre-
quency range is defined by 0 < 8/ky, < 1, with 8 being the real
phase constant.
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Fig. 3. Convergence studies for a microstrip-like transmission line [5]. The
normalized propagation constant and the relative error (compared with the
quasi-TEM solution) versus: (a) Aperture field expansion terms with nor-
mal (+ +) and modified (¢ °) eigenfunction basis; (b) Coupling terms in
the strip region with a strip thickness of 10 um (+ +) and 100 pm (0 0);
w=h=127mm,a =5b = 12.7 mm, ¢, = 8.875.
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Fig. 4. Propagating, evanescent and complex modes of a suspended mi-
crostrip line; Our results for even (___) and odd (— —) modes compared
with those of [11] (o, +); WR28 waveguide with w = 1 mm, 4, = 0.635
mm, b, = hy + £, 1 =5pum, e = 9.6.
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Fig. 5. Leaky-wave mode of a microstrip leaky-wave antenna; Our results

() compared with data taken from [15] (+ +). Dimensions used:

w=15h = 0.794, a = 45 (mm); ¢, = 2.32.
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Fig. 6. Dispersion behavior of a bilateral finline. Even (___) modes com-
pared with those of [4] (+ +); Odd modes with (— —) and without (—- —)
open condition. WR28 waveguide with 2s = 0.5, 2d = 0.125 (mm), ¢, =
3.

IV. CONCLUSION

This paper presents a modified transverse resonance method for
analyzing generalized quasiplanar structures with practical param-
eters such as finite conductor thickness and mounting grooves. The
computation of the frequency behavior of propagating, evanescent
and complex modes have been carried out for several commonly
used quasiplanar lines, and good agreement with published results
has been obtained. Furthermore, as the open condition can be eas-
ily taken into account by using this formulation, the leaky-wave
modes for open quasiplanar structures have also been studied, giv-
ing useful design information.

APPENDIX
The quantities appearing in (2)
*for TE case: cosh 70 = /0%, sinh 7 = —k$)/ QY
*for TM case: cosh 70 = k& /00, sinh 7 = —y/0F

(A1)
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where QY% = k(> — v*, and v = a + jB is the complex propa-
gation constant. w'" denotes the height of a parallel-plate wave-
guide.

Matrix elements T'%/* D in (4)

F(1,1+ [} - ?‘IE([,I+ n- l:ﬁv
with

QD = (=)< gu YH Vg,

Fo— [?(i)3(1+l.l)] . ?](iJr],N)]t
(U = g €0, 1=1,2,+ K
(ﬁ(iﬂ,q))ml = <gm’ e};ﬂ,q)), [=1,2, ", K(z+1,q);
o N oo
fz(z,:+1) — Z (1)1‘)‘(1) + Z Z (i.q)l.’)‘(t.q); A2
k=Km+lyk k q=11=1<<un+1y[ ! A2)
PPF = éf (e, Fy = €ff S (X" F) dS

K corresponds to the number of coupling eigenmodes in the /th
region, and G = {g,} denotes the eigenfunction basis for the ap-
erture electric field expansion in an N-furcated parallel-plate wave-
guide given by

_ e+ 10D a+1,1 1+ 1,N) (+1,N)
G—-[e’,, N )...eil cee 8y ]

(A3)
One should note that (A3) will be truncated during the numerical
process. When the edge condition is considered, the following ba-
sis will be used instead of (A3),

G G,G)] (Ad)

with

+ I, — i+1, - +1, - +1, -
A A A A T

Ay — (w(1+l,q)/2)2 _ (y — t(1+l.q) — W(1+1,q)/2)2

v will be 3 for the zero thickness strip case, and 3 for the finite
thickness strip. By examining (A2)-(A4) and (2), one can see that
all integrals will be analytic and independently of ~y.
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Dispersion and Leakage Characteristics of Coplanar
Waveguides

Jeng-Yi Ke, I-Sheng Tsai, and Chun Hsiung Chen

Abstract—The spectral-domain approach is utilized to discuss the
dispersion and leakage phenomenon in a coplanar waveguide structure
caused by the substrate surface wave. In this study, the effective di-
electric constant and the attenuation constant due to surface wave leak-
age are presented and discussed in detail.

I. INTRODUCTION

Recently the coplanar waveguide structure receives increased at-
tention due to its potential applications in millimeter wave spec-
trum. With all three conductors on the same side of the substrate,
the coplanar waveguide is easy in adaptation to active and passive
components in shunt and series configurations and hence becomes
a useful component of millimeter-wave integrated circuits.

The coplanar waveguide structure was proposed by Wen [1] as
a transmission medium in microwave circuits. Its dispersion char-
acteristics were studied, using the full-wave analyses such as spec-
tral-domain approach [2] and hybrid approach [3].

The possibility of leakage in coplanar waveguide structure
through substrate surface-wave modes was discussed and estimated
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by a simplified theory based on reciprocity [4], [5]. Leakage to
substrate surface-wave modes was also observed in other structures
such as the coplanar stripline [6], the slot line [7], [8], the micro-
strip on an anisotropic substrate [9], and the conductor-backed co-
planar waveguide [5]. Recent leakage study on coplanar wave-
guides of finite and infinite widths revealed several interesting
behaviors such as sharp and deep minima and narrow sharp peaks
[10]. Since power leakage through surface waves may produce un-
desired cross talk and package effects, there is a need of detail
leakage analysis for the coplanar waveguide structure.

In this study, the spectral-domain analysis will be utilized to dis-
cuss the leakage phenomenon in an open coplanar waveguide struc-
ture caused by the substrate surface wave. The dispersion and leak-
age characteristics of the coplanar waveguide will then be discussed
in detail, which include typical numerical results such as the effec-
tive dielectric constant and the attenuation constant due to surface
wave leakage.

II. SPECTRAL-DOMAIN ANALYSIS

Consider the coplanar waveguide structure (insert of Fig. 1) with
strip width w, slot width, s, and a substrate of thickness # and
relative dielectric constant ¢,. It is assumed that all field quantities
are of the form exp [ j(wt — k,2)]. To conduct the spectral-domain
analysis, the Fourier transformation pair is introduced as

Ak = S A(x)e 7 dx
1 S e .

A(x) = — Ak)e™ dk,. (1)
27[' —co

Then a relation which relates electric currents (J,, J,) to electric
fields (E., E,) in the spectral domain can be established [11]

jz G~ZZ GZX EZ
<’~ > - < ¢ 5 > < ) > ~ (2)
].r Gx: er Ex

Here G,,, G,,, G.., and G,, are the transformed Green’s functions
whose poles may be identified with the characteristic surface wave
modes of the dielectric slab with back-side metallization.

In this analysis, the tangential electric fields on the slot are ex-
panded as

Ex) = X CI oIk
E() = 2 CL&x), 3)

where C; and C} are unknown coefficients to be determined and
® 7 (x) and ®}(x) are known basis functions as suggested by [12].
By applying the Galerkin’s procedure in the spectral domain, the
following matrix equation can be derived

[Z}1IC] =0 C3]
where

[C1=[C:CiT

' = ng & G & dk,, i,je{x, z}. 4
The propagation constant k, is then obtained by requiring the de-
terminant of the Z-matrix be zero, and the effective dielectric con-
stant e, = (k./ko)” can be achieved.
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